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ABSTRACT

Continuous and discontinuous NaF fibers, mbedded in a NaCl matrix, have
been produced in space and on earth, respectively. The production of ccntinu-
ous fibers in a eutectic mixture was attrilbuted to the absence of convection
current in thte liquid during solidificatio? in space. Image transmission and
optical transnittance measurements of transverse sections of the space-grown
and earth-grown ingots were made with a light microscope and a spectrometer.
It was found that better optical properties were obtained from samples grown
in space. This was attributed to a better alignment of NaF fibers along the
ingot axis.

A new concept is advanced to explain the phenomenon of transmittance
versus far infrared wavelength of the directionally solidified NaCl-NaF eutec-
tic in terms of the two-dimensional Bragg Scattering and the polarization
effect of Rayleigh scattering. This concept can be applied to other
eutectic systems as long as the index of refraction of the matrix over a range
of wavelengths is known. Experimental data are in excellent agreement with

the theoretical prediction.
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Section 1
INTRODUCTION

When certain binary eutectic mixtures solidify, one of the two phases
can form fibers or platelets in a matrix of the second phase. For exanple,
when a eutectic liquid of NaCl and NaF scljidifies, fibers of NaF form in a
matrix of NeCl.

Fiberlike and platelike eutectics produced on Earth are limited in
perfection by the presence of a banded structure, [1,2] discontinuity, (3]
and faults [4,5] due, at least’in part, to vibration and convection currents
in the melt during solidification. The presence of these defects renders the

[6]

solid-state eutectic devices inefficient and useless. However, if the
solidification process is performed in a space environment, where there is no
vibration and convection current in the melt, there is reason to hope that
fault-free, continuous and perfect platelike and fiberlike eutectic micro-
structures can be produced. Thus, the electrical, thermomagnetic, and suner-

conducting chracteristics of such eutectics will be st:ongly anisotropic, and

this will make possible various exciting device applications.



Section 2
OBJECTIVES

The objectives of this project were: (1) to prepare, in a space experi-
ment, fiberlike NaF-NaCl eutectic with coutinuous fibers embedded in the:
matrix. This eutectic cannot be producea on Earth due tc the presence of
convection currents and vibration in the melt during solidification; (2) to
extract a few fibers from a Skylab-grown NaCl-NaF eutectic ingot and also
from Earth-grown ingots, and ta determine whether the extracted fibers were
continuous or discontinuous; (3) to sketch a hypothetical advancing solid-
liquid NaCl-NaF eutectic interface; (4) to calculate the interfiber spacing
of the NaF fibers; and (5) to measure transmittance versus wavelength curves

of Skylab-grown, and Earth-grown ingots, both along and perpendicular to the

fiber axes.

PRICEDING PAGE BLANK NOL #ilass.
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Section 3
EXPERIMENTAL PROCEDURE

NaCl-21 wt%Z NaF eutectic ingots were prepared from 99.96X% NaCl and 99.7%
NaF, obtained from Research Organig-lnorganic Chemical Corporation, Su: Valley,
California. The salt ingots were melted and solidified in an induction furnace
under an argon atmosphere. After solidification, each ingot was machined to
the shape and dimensions as depicted in Figure 1, labeled as Sample.

To hold the salt ingot, a graphite cruclble was machined from a high purity
graphite rod 1/2 in. in diametef and 12 in. long, obtained from Ultra Carbon
Corporation, Bay City, Michigan to the dimensions of 4 in. in length, 0.350 in.
0.D., and 0.310 in. I.D. Since graphite is a very fragile material, a special
method was employed to machine the crucibles. Starting with a 0.5 in. rod
mounted in a lathe, the 0.310 in. hole was drilled so as to be concentric with
the graphite rod. Then a 0.31 in. brass rod was inserted into the 0.310 in.
hole to give the graphite tube support while the outer diameter was machined
from 0.5 in. to 0.35 in. in diameter. The graphite crucibles were cut to
4.375 in. in length and then calcined in vacuum at 950 deg. C for 25 hours.

The salt ingot-graphite crucible assembly was then loaded into a 304
stainless steel container of dimensions shown in Figure 1. The steel con-
tainer was made from 0.375 in. 0.D. and 0.355 in. I.D. stainless steel tubing
obtained from Tube Sales Co., Los Angeles, California, with a stainless steel
plug heliarc-welded to one end of the tube. After loading the ingot-crucible
assembly, the inner wall of the stainless steel container was coated with a
graphite paste where the salt ingot is exposed to the container. Then a
calcined graphite disk (0.010 in. thick) was placed over the end of the ingot.
The graphite paste and disk were employec to prevent a reaction between tne

container and rhe salt when the salt was later remelted and resolidified. 7The
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container was then sealed by heliarc welding a cap, with a #60 vent hole as
shown in Figure 1, in place.

There were three groups of samples invclved. All were prepared inicially
at UCLA., The first set was retained at UCLA for later comparison, (grou), A).
The second was sent to Westinghouse Labor:itories to be regrown in a proto-type
furnace for comparison with the space grown samples, (group B). The third group
of three samples went from UCLA to the Skylab for growth in space, (group C).

The resolidification experiment in Skylab 3 was carried out ir a mult.-

(7]

purpose electric furnace. One-half inch of the eutectic sample in this
experiment adjacent to the graphite disk was left unmelted and the remaining

portion of the sample was melted and resolidified unidirectionally toward the

_ empty space of the ampoule as indicated in Figure 1. The solidification rate

was 0.6°C/min and the temperature gradient was 50°C/cm.



Section 4
RESULTS
The experimental results are presented in five parts. The first part

concerns the macro- and microstructures of the samples Lhat were grown in
Skylab 3 and on Earth. The second parf concerns the extraction of continuocus
NaF fibers embeda2d in a NaCl matrix. The third part deals with the shape of
the a@vancing solid-liquid interface of the Skylab-grown ingot. The fourth
part is to calculate the interfiber spacing of the NaF fibers of the Skylab-
grown NaCl-NaF eutectic. The fifth part concerns the image transmission of
the NaCl-NaF eutectic, and the sixth part, the optical transmittance.

4.1 Macro- and Microstructures

After the space experiment the three ampoules were hand-carried to us by
Mr. Williams of NASA and were given three identity numbers (M564-6, M564-10,
and M564-11). Radiography for voids was carried out at NASA, Huntsville.
Figure 2b 1s a radiograph of the three large cylindrical cartridges* contain-
ing the three samples and Figure 2a is a radiograph of the three ampoules,
after they had been removed from the cartridges. In both figures, voids are
present in all three samples. Sample #10 of Figure 2a shows the presence of
a disconnection which apparently occurred when the ampoule was removed from
the cartridge.

Figure 3 is a macro-photograph showing the appearance of the three
ampoules after the space experiment. The surfaces of the stainless steel
cylinders and the copper tubing were in perfect condition. Remelting of the
silver solder was not detected in the joint binding the stainless steel

cylinder and copper tubing together.

*
Note brass plugs at one end of cartridge and stainless steel tubes (about 1"
dia) at the other.

PRECEDING PAGE BLANK NO. fiar. .
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Figure 4 is a macro-photograph of the three skylab-grown samples taken
out of the ampoules by grinding off the welded ends of each stainless steel
cylinder. Carcful inspection of the surface of the samples revealed no reaction
between the 1':Cl-NaF eutectic and the graphite container. In sample #10, two
transverse fractures surfaces occurred, both at the head and tail portions of
the sample as revealed in Figure 4. However, the fracture, which occurred
after the re-gilidification, did not interrupt the growth pattern of the sample.

Figure 5 Lls a macro-photograph of the solidified sample (number 6), show-
ing the yeometry of the meltﬁack 1ngerface, columnar grains of the solidified
portion of the sample (on the right of the interface), and the unmelted portion
of the sample (on the left of the interface). An enlarged portion of the
solid-1liquil interface is given in Figure 6 which shows the beginning of the
solidificatilon process. The NaF fibers here grew in a direction perpendicular
to the interded direction. This indicates that the direction of heat extrac-
tion during the onset of ~.lidification was not parallel to the growth
direction as intended. However, in a distance not far away from the initial
s0lid-liquid interface (about 0.08 cm), the NaF fibers began to align toward
the growth direction. Figure 7 is a representative photomicrograph of a
longitudinal section of scmple #6 showing the long continuous fibers. A
representative photomirrcgraph of a transverse section of a sample is shown
in Figure 8 which reveals the shapes of the fibers which are preferentially
rectangular with rounded or angular ends. A scanning electron photomicrograph
showing th' .hapes of NaF fibers grown on Earth, (from group B), is given
in Figure 9a, which is tne perspective view of the rectangular NaF fibers,
protruding from .re continuous NaCl matrix. Notice that the fibers are not
parallel to rne another. Figure 9b shows a corresponding SEM view of the

Skylat-grown ingot, showing that all the NaF fioers are aligned in one

12
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Macrograph Showing the Original Shape of the Solid-Liquid
Interface of the Skylab Grown NaCt-NaF Eutectic. X6.5
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Figure 9b. Scanning Electron Micrograph of the Skylab-Grown
NaF Fibers, X3200
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direction. This demonstrates that the direction of heat flow was perpendicu-
lar to the advancing solid-liquid interface during the solidification process
in the Skylab after the interface had movecd away from its starting point.

Single-grain eutectic was not produced in the presence of microgravity
in space as evidenced in Figure 10 which 13 a transverse section of sample »10.
Many grains are present throughout the whole cross-section. However, the
fibers are aligned very regularly parallel to the growth directiomn.

Evidence supporting this is given in Figure lla which is a picture t.ken
from sample #6 grown in space. ‘Filtered light from a Bausch & Lomb microscope
was directed at the lower end of the sample. Due to good alignment of NaF
fibers along the sample axis, light was transmitted from the lower end to and
terminated at the melt-back interface which is about l.4cm away from the upper
end of the sample. Light was not transmitted through the unmelted portion
of the sample because the fibers did not line up with the sample axis. Note
the homogeneity of the sample as revealed in Figure lla. Figure 11b is a
portion of a NaCl-NaF eutectic sample grown vertically on Earth in a prototype
furnace (group B) with very little convection current in the m;lt during growth.
Light was completely transmitted from one end to the other, indicating that
the NaF fibers are aligned in the direction of the growth axis. However,
many striations appeared on the surface of the cylindrical sample, indicating
the presence of non-homogeneity in the sample. A non-homogeneous crystal
can be transformed to a homogeneous one if it i1s grown in a space environment
with negligible gravity. Figure llc is a picture taken from a sample grown
in an induction furnace at UCLA, (group A). An attempt was made to shiie a
light at one end of the sample but it d ' not travel very far because the NaF
fibers were not well-aligned in the direction of the light. However, when

light was shone on the side of ti.e sample as indicated by the white spot
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Figure 10. Macrophotograph of the Transverse Section of the NaCQ-NaF
Eutectic, Showing Grains and Subgrains. X9 Sample No. 10
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in Figure 10c, some transmittance of light occurred in the direction perpendicu-
lar to the sample axis as well as parallel to the axis, indicating that the
fibers, while predominantly parallel to the exis, are also partially perpendicu-
lar to it. Barded microstructure was evidenced in Figure llc in agreement

with our original prediction.

4.2 Sodium Fluoride Fibers

Figure 12a is a ma -ograph of a space-grown ingot that was immersed in
methyl alcohol for five weeks to dissolve the NaCl matrix. The surface of
the undissolved portion of the ingot is encased with a sheath of NaF fibers.
An enlarged portion of the ingot containing the unmelted portion is given in
Figure 12b. Notice that, on the right-hand side of the interface, the
undissolved portion of the eutectic ingot reveals the presence of striations
along the ingot axis. However, the striation directionality was not evident
in the unmelted portion of the ingot, indicating that the fibers are short and
randomly distributed. Figure 13a proves that the growth of fibers originated

at the solid-liquid interface. Figure 13b is a picture of the end cross

~section of the unmelted portion of the ingot, showing that the short NaF

fibers produced on Earth (before thé experiment), are perpendicular to the
cylindrical surface of the ingot. A macrograph of the lower end of a Skylab-
grown ingot after dissolving the NaCl matrix in alcohol is given in Figure 14
which shows that the NaF fibers are indeed continuous. . Since the macrograph
was taken when the ingot was dried, the NaF fibers appear wavy. Figure 15 is
a photograph of a Skylab-grown ingot taken when the NaF fibers were suspended
in methyl alcohol. From this figure, it is evident that the individual NaF
fibers are fine and straight. When the Earth~grown NaCl-NaF eutectic ingot
was immersed in the same solution, Na¥ fibers could also be extracted from

the NaCl matrix. However, the extracted fibers were short and discontinuous
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Figure 13b.  Discontinuous and
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X8.6. Sample No. 11.
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Figure 14. Macrograph of the End of the Skylab-Grown M564-11 Ingot, Showing Continuous
NaF Fibers (Picture was Taken After the Ingot was Dried). X8.6
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as indicated in Figure 16 in agreement with prediction, (sample from group B).
In view of the above analysis, it is concluded that continuous NaF fibers
have been produced in space.

4.3 Advancing Solid-Liquid Interface

According to Yue (81, the formation of a tilt boundary in a eutectic
mixture is attributed to the presence of an indentation generated at the per-
turbed solid-liquid interface as predicted by Mullins and Sekerka.[gl This
indentation may be reflected in the eutectic solid as a small tilt between the
fibers on each side of the indentation and shows up as a tilt bouadary with
faults of like sign. This is illustrated in Figure 17 which shows a small-
angle (15°) tilt boundary (Skylab sample #6). On the basis of this observa-
tion, it is tentatively concluded that a microscopically planar advancing

solid-liquid interface was not produced in the absence of gravity for the

present eutectic, which was not totally pure, (99.96% NaCl and 99.7 % NaF).

4.4 Inter-fiber Spacing

From the thermal data supplied by Westinghouse, we have calculated a
range of growth rate varying from 0.5 micron/sec to 4 microns/sec for group
B samples. The measured inter-fiber distances in Space-grown and Earth-grown
ingots at growth rates around 3.5 micron/sec are listed below:

Interfiber Distance, Microns

Space-Grown Earth-Grown
5.6 (M564-6) 5.2 (M564-9) .
4.8 (M564-10) 4.3 (M564-14) ™

6.2 (M564-11)
The average diameter of the fiber is from 2 to 3 microns. These measurements
indicate that there is no significant difference in interfiber distance

between the Space-grown and the Earth-grown ingots.
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Figure 16. NaF Fibers Extracted from Earth-Grown NaCte-NaF Eutectic.
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Figure 17. Micrograph of NaC%-NaF Eutectic Showing a Small Angle Tilt Boundary. X135
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4.5 Image Transmission

Image transmission properties similar to those of fiber optic materials

[10] Since the eutec-

have been obtained by others with an NaCl-NaF eutectic.
tic in that case had discontinuous NaF fibers, far better results will be
obtained if the same eutectic can be produced in space with continuous fibers.
Two cylindrical sections 2.5 cm long were cut from Skylab-grown and Earth-
grown (group B) samples. Image transmission experiments were made on these
two samples. Their results are given in Figure 18. Figure 18a shows that an
image was transmitted from a source (a sheet of paper containing the word
"Skylab") through the length of the sample, to its surface. The transmitted
image has the same dimensions as the source, indicating that the NaF fibers
are perpendicular to the plane of the paper. However, the transmitted image
is not as clear as the original image of the source indicating that there is
a loss through transmission. Some loss is common to all fiber optics materi-

(11] A transmitted image was not observed from a sample grown on Earth

als.
as evidenced in Figure 18b. This is attributed to the presence of discontinu-
ous and randomly distributed NaF fibers in the NaCl-NaF eutectic produced on

Earth.

4.6 Optical Transmittaace

Figure 19 is a plot of transmittance vs. wave number k (40 x 102 to
4 x 102 cm-l) for NaCl-NaF eutectics grown at UCLA (group A) and grown in the
Skylab (group C). The transverse sections of the eutectic sample were 0.107
in. thick. For the NaCl-NaF eutectic grown at UCLA, where there were convec-
tion currents present in the liquid during growth, the transmittance was about
10% over a narrow range of wave numbers, as indicated in Figure 19. When the
same eutectic was grown in space, where there were no convection currenté in

the 1liquid during growth, the transmittance was increased to 657 over a much

¢ it
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L

1
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EARTH-GROWHN

NACL - NAF EUTECTI
] 1 1

40 3% 230

Figure 19.

25 20 16 12 8
WAVE NUMBER (x 102cm™)
Far infrared transmittance curves for
NaCl-NaF eutectics grown on earth

and in space. Sample thickress = 0.107 in.
{Transverse section)
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larger range of wave numbers. This was attributed to the achievement of
producing continuous NaF fibers embedded in a continuous NaCl matrix so that
the losses due to reflection and refraction of light within the eutectic
specimen have been reduced greatly. The shape of the transmission curve for
the Skylab-grown NaCl-NaF eutectic is of great interest. At k > 40 x 102 cm-l.
the transmittance of this eutectic approaches zero. The explanation is ttat
the interfacial atoms at the fiber-matrix interface are mismatched. When
incident light is directed at the surface of a eutectic sample, a large
fraction of the incident light tr;nsmitted through the eutectic sample will
be lost due to scattering. This observation is in agreement with the fact that
the higher the wave number (or the shorter the wavelength), the higher the loss
through scattering.

Figure 20 is a plot of transmittance versus wavelength of a transverse
section of a sample vertically-grown on earth (group B) having varying thick-
ness. The results indicate that at a wavelength of 6u, the transmittance

increases from 40% to 70% when the sample thickness was reduced from 0.080

in. to 0.063 in. However, the increase in transmittance is not evident at

‘a wavelength greater than 15u. Figure 21 shows the effect upon transmittance

of etching in alcohol to dissolve the NaCl matrix. It is seen that such short
etching produces no change at the long wavelength, and minor changes at the
shor. wavelength end of the range (5 to 20 microns).

Figures 22a and 22b show the effect of thickness on the transmittance
perpendicular to a longitudinal section of a UCLA~grown sample (group A),
using polarized light with electric field parallel and perpendicular to the
fiber axes respectively. Figures 23a, 23b and 24 show the same curves for
Earth-grown samples (group B). In this group, sample #9 was vertically growm,

but sample #3 was horizontally grown. Fibers of sample #3 were not aligned

33
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Fig. 20. Far infrared transmittance curves of a transverse section of vertically grown
eutectic (M564-9) of varying thicknesses.
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Figure 21. Etching effect on far infrared transmittance curves of a transverse section

of vertically grown NaCi-NaF eutectic (M564-9). Thickness = 0.0382 in.
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Figure 22a.  Far infrared transmittance curves of a longiiudinal section of UCLA-grown
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Figure 22b.  <ar infrared transmittance curves of a lonﬂudmal section of UCLA-grown

NaCl-NaF eutectic of varying thicknesses. € fiber axes
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Figure 23a.  Far infrared transmittance curves of a longitudina! section _of vertically
grown NaCl-NaF eutectic (M564-9) of varying thicknesses. E! fiber axis.
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Figure 23b.  Far infrared transmittance curves of a longitudinal sgtion of vertically grov.n
NaCl-NaF eutectic (M564-9) of varying thicknesses. E!l fiber axis.
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due to the strong convection current during the growth. Hence the trans-
mittance curve of a longitudinal section of sample #3 shows almost no
transmittance for wavelength less than 7u. Figures 25a, 25b, 26a and 26b
show the transmittance curves of long;tudinal sections of Space-grown samples

(group C).
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Figure 25a.  Far infrared transmittance curves _gf a longitudinal section of NaCi-NaF eutectic
(M564-6) of varying thicknesses. E1 fiber axis.
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Figure 25b.  Far infrared transmittance curves _gf a longitudinal section of NaCi-NaF eutectic
(M564-6) of varying thicknesses. E} fiber axis.
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Figure 26a.  Far infrared transmittance curves of a longitudinal section of NaCi-NaF eutectic.
{M564-10) of varying thicknesses. E ! fiber axis.
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Figure 26b.  Far infrared transmittance curves o_f: longitudinal section of NaCl-NaF eutectic.
{M564-10) of varying thicknesses. E 1 fiber axis.
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Section 5
DISCUSSION
5.1 NaF Fibers
In a zero-gravity environment, there is no gravity-driven convection
current in the liquid during solidification and there is no difficulty in
mixing two licuid phases of different densities. Furthermore, vibration
levels in the spacecraft will be far lower than those on Earth. Consequertly,
a homogeneous eutectic mixture consisting of continuous fibers can be pro-
duced in a space envifbnment, and microstructure sensitive to convection
currents and vibration can develop undisturbed. Accordingly, the success in
producing continuous NaF fibers as evidenced in Figures 12 and 15 is mainly
due to the absence of convection current in the melt during resolidification
in space.

5.2 Qptical Transmittance

Pure sodium chloride and sodium fluoride crystals, as is known from pre-
vious work, have approximately 95% transmittance per cm of thickness up to 15
and 9 microns respectively in the far infrared wavelength region. These curves

are shown for comparison at the right of Figure 27. Beyond these ranges of

wavelengths, these crystals have zero transmittance due to the optical modes

of lattice vibration of ionic crystals. Figure 27 also shows a set of trans-
mittance versus wavelength curves of Skylab-grown (M564-6) and Earth-grown
(UCLA) fiberlike NaCl-NaF eutectics. If a thin piece of either one of these
eut: ctics is cut along its fiber axis (longitudinal section) as illustrated
in Figure 28, and is measured from 4 to 25 microns (u) wavelength with an
infrared spectrometer, typical transmittance versus wavelength curves with
polarized beam parallel and perpendicular to fiber axes are given in Figures
26a and 26b, respectively. For the electric field parallel to fiber axes

the transmittance is near zero over a range of wavelength less than Am 13 w),

Y, Ll J‘—U—d—ﬁ*“ 43

-

B - 25 e

et



]

o s s R

-
— e
[—
e

WAVELENGTH (MICRON)
25 3 4 5 6 7 8 910 15 2025
100 T - - T I T
&
o 80 NaF NaCl -
[5]
2 NaCl-NaF (M564-6)
E°r i
- —— — /\
s ! (10] g -~ _
@ 40 FNaci-NaF (8.0.G) e o
z p
o© l_ -
- 20 P NaCi-NaF (UCLA)
—4’ \
=" | ! | AW
4 35 30 25 20 16 12 8 a

WAVE NUMBER (x 102 cm™)

Figure 27. Far infrared transmission curve of transverse sections of NaCl-NaF [10] eutectics
grown on earth and in space. Sample thickness = 0.107 in.
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DIFFRACTED BEAM .

— TRANSMITTED BEAM

DIRECTION OF FIBERS

PORTION OF LONGITUDINAL EJTECTIC SAMPLE

Figure 28. Diagram illustrating quantities discussed in analyzing scattering measurements, for
transmission through a longitudinal sample section.
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a maximum wavelength. When the electric field is perpendicular to the fiber
axes, the percentage of transmittance increases over a range of wavelengths
less than Am and reaches a maximum value at a wavelength of 9.2 u, which is
designated Xp, a peak wavelength, as indicated in Figure 26b. Since a thin
NaCl-NaF eutectic sheet has these characteristics, it can be used as a polar--
izer and a modulator. It can switch on and oft the light at a specified wave-
length when the electric field is rotating. An explanation is advanced to
account for this phenomenon in terms of two-dimensional Bragg Scattering and

the polarization effect of Rayleigh scattering.

5.3 Theoretical Consideration of Optical Transmittance .

We consider now transmittance through a longitudinal section, {.e.,
beam perpendicular to the fibers, as shown in Figure 28. Since the fiberlike
microstructure of a transverse section of NaCl-NaF eutectic ingot has a
hexagonal periodicit3[12] an& the arerage fiber diameter and interfiber
distance are 2 and 6 microns, respectively which are less than the wavelength
that we are interested in, it can be assumed that the light is coherent and
that it propagates through a continuous NaCl matrix and is scattered by the
NaF.fihers. In other words, only the index of refraction of Na(Cl should be
involveu, not the effective index of refraction of the NaCl-NaF eutectic as

suggested by Sievers.[l3]

This hypothesis is reasonable and consistent
because scattering by NaF fibers is taking place for wavelengths greater

than the average diameter of NaF fibers. If we assume that NaF fibers are
transmitting the light perpendicular to the fiber, from one side to the other,
then the high value of the number of fiber-matrix interfaces per unit volume
would give essentially zero transmittance for a range of wavelength greater

than Am' According to Figures 26a and 26b, this is not the case, because

a significant hump appears in transmission below this wavelength. Assume,
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then, that light is transmitted through the NaCl matrix but scattered by the
fibers. Whenever Bragg's Law is satisfied, the percentage of transmittance
decreases due to the constructive reflectiox loss, since such diffracted
beams will leave the sample at other angles and will not be seen in mea- ure-
ment of the t.ansmitted beam at 6 = 0°. In our consideration we use tha
index of refraction of NaCl, Oyacl (A\), instead of using the effective index
of refraction,(z) n(\). Accordingly, Bragg's Law for a two dimensional

hexagonal lattice is expressed as

3

- a0
hZ+nktk?  YaCl

A= (A\) d sind (1)

and the maximum wavelength which satisfies Bragg's Law is

Ay ™ V3 UNacl

(Am) d, for h=1, k=0, O(interior angle) = 90° (2)
vwhere A and Am are the wavelengths (in free space) as defined previously,
h and k are Miller indices, 6 is the Bragg angle inside the crystals, d is

the average interfiber distance and n

NaCl(Am) is the index of refraction of

NaCl at a specific wavelength. Since light can still be transmitted through

the NaCl-NaF eutectic mixture at a far infrared wavelength greater than Am’

as indicated in Figures 26a and 26b, its cut-off transmittance is related to
the intrinsic cut-off value (25 u) of the NaCl crystal, not that (15 u) of the
NaF fibers, (see Figure 27). This additional evidence supports our assumption
that light is transmitted through the NaCl matrix.

It is well known[15’16]

that in scattering from isolated scattering
points, when the scattering angle 26 is 90°, (here © is the exterior angle),
the scattered wave is polarized, i.e., there is no wave with an electric field

parallel to the scattering plane which contains incoming and outgoing rays.

In other words, the reciprocal lattice point of this plane is missing at this
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specific wavelength with a 90° scattering angle in an Ewald construction. We
propose that this same effect explains the present scattering from the NaF
fibers. Then for cur case, for the electric field perpendicular to the fibers,
there can be no beam leaving at 90° due to such constructive reflection; hence
the transmitted beam will be a maximum. The transmittance should then have

a peak at a wavelength, Ap, when 0 for the reflected wave is 45°, i.e.,

3

A & [f———0D n (A_)d sin45°® 3
PV pZphi®  NaClp
A | A
The experimental data of and P versus A were plotted

BNac1(r) “Nacl(Ap)sinas‘

in Figure 29 which contains two curves. Since the same scattering plane
diffracts Am and Ap at 0° and 90° scattering angles, respectively, then we

should expect to find
A A

P . m
fyacy (Ap) 8in 45°  my o ().

A horizontal line, drawn crossing these two curves, yields values of A and Am

4)

on the abscissa as indicated in Figure 29. Different lines should yield
values matching the data at different values of d.

The Ewald construction in a reciprocal space of a two-dimensional
hexagonal lattice can demonstrate the conditions that the Bragg's Law of
reflection is satisfied for wavelengths, Am, Figure 30a, and Ap, Figure 30b,
respectively. The radius of an Ewald circle (nNaCl(A)) varies with wavelength.
The maximum wavelength, Am’ satisfies the Bragg's Law of reflgction with the
smallest possible radius of Ewald Circle (Figure 30a). A 90° scattering angle

in an Ewald construction as shown in Figure 30b gives a radius of

1l
V3 d sink5°®

which corresponds to a peak wavelength, Ap.
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NN.C!(XP)”"’ or 1/(\/§Jsin 0).
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By knowing the experimental values of Am’ the values of Xp and the
theoretically calculated interfiber spacings, d can be predicted from
Figure 30 or, glven Ap. we can predict the values of Am and d. This approach
can be applied to any of the eutectic systems as long as the index of
refraction of the matrix n(A) is known over a range of wavelengths of
interest.

Our experimental data of Am’ Ap and d and those of Sievers[13] are
listed in Table 1. Both the theoretically calculated Ap and d are in
excellent agreement with the expérimentally determined values, indicating
that our new approach for predicting Ap and d is reasonably sound and

justified.

TABLE I
Interfiber Spacings, Maximum Wavelength and Peak Wavelength

for Bragg Scattering

Am (microns) Ap (microns) d (microms)
Measured Measured Calculated Measured Calculated
Present data (1) 13 9.2 9.2 5.10 5.00
. Present data (2) 12 8.4 8.5 4.74 4.80
Sievers data (3) 14 10.0 9.9 5.93 5.80
Prasent data 14 10.0 10.0 5.60 5.51
Sievers data (4) 11 7.8 7.8 - 4.35 4.50
Present data 11 7.9 7.9 4.50 4,30

Since our proposed explanation for the peak in transmission at Ap (for g1
to fibers) depends upon fiber spacing, 3; the breadth of the experimental peak
is presumably due to the range of values of d in the sample. We propose,
therefore, that the more uniform the spacing d, the sharser will be the
experimental transmission peak. Hence, one measurement of this peak should

serve to define the homogeneity of fiber spacing in the sample.
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Section 6
CONCLUSIONS
The following conclusions can be drawn from this report:

Continuous NaF fibers, regularly arranged in a NaCl matrix, have been
produced in a space environment.

Larger transmittance over a wider wavelength and better image transmission
were obtained from the space-grown materials.

A new concept has been proposed to predict Xm’ the maximum wavelength,
and Ap, the peak wavelength, using the solidification data.
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Section 7
RECOMMENDATIONS

1. To design decanting experiments to study the interface norphology in the
scientific laboratory to be used in the early flights of the Space Shutt.e.

2. To etch out NaF fibers from the NaCl matrix for the study of multiple
channel electron intensifiers.

3. To make extensive study on the composition cf NaF and NaCl phases using
electron microprobe.
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